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1 Introduction

In order to successfully provide high resolution science output, the Space Interferometry Mis-
sion requires a well-de�ned full-sky astrometric grid to provide scale and calibration informa-
tion. The development of this grid is so critical to the science results that the production of
the grid is considered fundamental mission operations. The resulting grid information will be
a product provided to the end user.

Starting with the astrometric grid simulation code that Andy Boden described in his memo
[2], I have been modifying the code for greater detail and throughput as well as studying the
e�ects of various mission scenarios on the resulting astrometric grid. The main focus of this
note is a study of the e�ects of losing the metrology lock during a grid campaign.

2 The SIM Astrometric Grid

The details of creating and solving for the astrometric grid may be found in Andy's original
memo[1], so this note will contain an overview so that this analysis may be understood.

The fundamental measurements that SIM is capable of making is one of the relative delay
between two path lengths for the light from an object, calculated by Equation 1, where ŝ is
the object position vector, ~B is the baseline of the instrument, c is a constant term to deal
with object path length di�erences in the instrument monitored by the internal metrology, and
� will be the measurement uncertainty due to �nite measurement resolution and systematic
uncertainties. For this analysis � was a random gaussian value with � = 200pm.

d = ŝ � ~B + c+ � (1)

The baseline of SIM cannot be a priori measured to the necessary resolution for micro-
arcsecond position measurements. What we can do is track the relative metrology changes in
the baseline from an initial, albeit unknown value. This means that when measuring the sepa-
ration of two arbitrary objects by measuring their respective delays, the resulting measurement
has no directly applicable scale. However, if measurements are made for many interlocking sets
of objects covering the entire sky, the knowledge that the whole of the sky covers 4� may be
incorporated with those individual measurements to add an angle scale to the measurement.
In this way we are able to reconstruct the separation between objects on the celestial sphere,
and thus their positions.



Parameter Distribution

Position (�; Æ) random on sphere, with minimum separation requirement (see text)
Proper Motion (�) random direction, gaussian magnitude, 0 � 0.001 as/year
Parallax (�) distance is gaussian, 1000 � 100 parsecs

Table 1: The distributions of the astrometric parameters for the generated grid objects.

Like the baseline length, the attitude of SIM cannot be measured on-the-
y precisely enough
in real time. By including the SIM attitude as parameters in the data reduction procedure for
science observations, the SIM attitude during a measurement may be determined after-the-fact
during data reduction, using any attitude estimates from on-board instruments as an initial
estimate.

Although we focused on object positions in the above explanation, the positions of these
objects are also modi�ed by their proper motion and parallax when considered at a particular
epoch. In a similar manner to the position, these parameters are determined and will contribute
in setting a scale for the measurements of science objects.

This important catalog of objects is termed the astrometric grid. The objects shall be
selected for their magnitude, stability of motion, and sky location, and will serve as references
for other observations. Ideally the grid will consist of objects with no companions and con-
stant magnitude that are uniformly distributed over the entire celestial sphere. The limited
astrometric �eld of view of SIM requires a density of these objects corresponding to about
2000-4000 objects for the 4� celestial sphere.

One �nal note: in the astrometric calculations presented below, all coordinates are ecliptic
coordinates. Since we are working with generated objects, and relative e�ects of variable
instrument conditions, the o�sets of real celestial and ecliptic coordinates was an unnecessary
complication which contributed nothing to our understanding of the e�ects observed.

3 Modi�cations from the Original Code

3.1 The Generated Object Catalog

For these studies, the object catalog generator produced 3000 objects with the characteristics
presented in Table 1. During the work that is being presented here, an error was discovered in
the program that generated the initial grid objects. In order to maintain whole-sky coverage, in
nominal operation a minimum separation between grid objects was imposed. As new objects
were generated they were required to satisfy this minimum separation from the previously
generated objects before being added to the list. Those that fail this test were rejected, until
the desired number of grid objects were generated. In nominal operation the separation in �

is normalized by cos(Æ) yielding a parameter we call ��, but this multiplication was missing in
the original generation code. This resulted in more objects than intended being packed into
the polar regions, degrading the uniformity of the object density on the simulated celestial
sphere.



This bug was discovered and corrected about 70% of the way through this analysis. Ex-
pectations were that the e�ect of this overabundance on the conclusions would be slight, if
noticeable at all. By comparing 30 of the grids calculated with the bug with 5 followup grids
calculated without the bug (Table 2), no signi�cant di�erence was seen at the statistical regime
of 30 experiments, so we conclude the results of the old and new code could be combined with
no e�ect on the conclusions reached for this paper.

Parameter Old Generator New Generator

�� 2.515 � 0.385 2.628 � 0.767

Æ 2.710 � 0.623 2.901 � 1.174

��� 4.149 � 0.726 4.023 � 0.423

�Æ 4.690 � 1.174 4.142 � 0.896

� 2.554 � 0.226 2.564 � 0.253

Table 2: The means and sigmas of the width of the parameter residuals for 30 grids calculated
with the old (with the object separation bug) generator versus 5 grids calculated with the new
(�xed) generator. All values are in �as. The 10% metrology break probability experiments
(explained later in this note) were used for this table, in order to see e�ects the metrology
breaks would have on the distributions.

3.2 Grid Observation Scheduling

The initial model of grid campaigns used a naive linear model for the timing of the grid
observations. The total mission time was divided by the total number of grid tiles, and the
resulting interval was used between successive tiles. This simple approximation worked just
�ne for the nominal ideal case, but with the introduction of variable instrument conditions,
such as losing metrology lock during a sequence of observations, the timing of the observations
becomes more important.

Conceptually, to avoid complications or interruptions in the grid observations it makes sense
to scan the entire sky as quickly as possible. This gives little time for changing instrument
conditions to develop enough to complicate the grid calculation, and is a model for which one
may easily think of an entire-sky survey of grid objects as a \snapshot" of the sky at that
epoch. Thus, it is thought that the normal operational mode of SIM should consist, in part,
of a series of dedicated grid observation campaigns.

Andy Boden has concluded from his studies that an acceptable number for grid observations
is 4.5 total-sky grid observation runs per year, and that approximately 20% of the total mission
observation time will be spent in the grid campaigns. This time is suÆcient for producing the
astrometric grid, while allowing time for science observations which use the grid as calibration.
The simulation has been modi�ed to model this.

A side e�ect of the new model of grid observations is that several months elapse between the
campaigns. We may conservatively assume that changing instrument conditions during this
time will a�ect the metrology, so it is reasonable that an implicit metrology break be inserted
between each grid campaign. This results in the number of baseline metrology lengths being
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Figure 1: The timing of the grid observation campaigns, using a two-year mission example, as
were most of the simulation experiments in this note. Although plotted as discreet points, the
individual tile observations for a campaign appear to merge and form a line for that campaign.
The intra-campaign gaps are seen as sequence breaks in the vertical direction.

at least equal to the number of grid campaigns. In the analysis below, these implicit metrology
breaks are not counted in the metrology break probability that will be used. For example, when
reporting a 0% metrology break probability, there is a 0% probability of additional metrology
breaks beyond the implicit break between campaigns, i.e. no intra-campaign metrology breaks.
Thus, a 10% metrology break probability means that for every tile within a grid campaign there
is a 10% chance that a metrology break will occur before the simulated tile data is \measured",
leading to a metrology break approximately every 10 tiles.

3.3 Conjugate Gradient on Multiple Processors

Mathematically, the problem being solved is essentially the canonical matrix equation shown
in Equation 2, for which a two-processor computer (expandable to four) was purchased to
calculate the time consuming matrix reductions necessary.

~A~x = ~b =) (~AT ~A)~x = (~AT~b) (2)

While the original code ran the ATA calculation using a farm of tens of workstations, the
conjugate gradient reduction resulting in the correction vector ~x used for the next iteration



[1] was written as a sequential calculation, not taking advantage of the multi-processor capa-
bilities. Rewriting the conjugate gradient code for a parallel calculation using the same farm
of workstations would cause network communication problems due to the volume of necessary
information exchange, so running a parallel version of the CG code on a single multiprocessor
machine seemed an ideal solution.

We selected the pthreads[3] library for this task because it is a portable standard and the
libraries are available for many machine platforms including Suns and SGIs. Sun and SGI are
producing machines with an increasing number of processors, and this trend looks to continue
in the future, so taking advantage of the ability to parallelize and port the code early in
development is prudent.

3.4 Grid Object Magnitude E�ects

The original version of the grid code did not consider the magnitude of the grid objects at all
in the simulation. There was no integration time necessary for each observation, and there
were no fringe-�nding uncertainties due to objects of di�erent magnitude. As of this writing,
the code to account for magnitude was inserted into the model, but it was not enabled for this
analysis. It will be used for future analysis concerning the quasars for tying the grid to the
extra-galactic reference frame.

4 Metrology Breaks

The impetus of this study is the concern that an undetected slow changing of the instrument
baseline through the mission might undermine the accuracy of the astrometric grid. Since the
astrometric grid is fundamental to the science measurements during the mission, understanding
e�ects such as these is crucial to the success of the mission.

4.1 Modeling a Metrology Break

Seeing the e�ect of a slow continuous changing of the metrology during a simulated mission
is diÆcult. Small changes in the metrology require corresponding higher statistics to observe
resulting e�ects in the simulation. However, to keep the simulation and grid results realistic,
we cannot just arbitrarily increase the number of grid objects that are observed. A realistic
grid for SIM consists of 2000-4000 objects (we use 3000 for this analysis) evenly distributed
around the entire sky. With this number of objects in the simulation, there are suÆcient
experiment-to-experiment variations in the width of the grid residuals that we must run many
experiments, then use the collected statistics to reach our conclusions.

We model the metrology breaks as a change in the baseline length which, for whatever
reason, is not continuously tracked by the external metrology. This gaussian-distributed change
(we use � = 1�m) is applied to the existing baseline so that through the mission the baseline
length exhibits a random walk, as seen in Figure 2.

Each new metrology will result in an additional �t parameter in Equation 2 to �t for the
new baseline length, which in turn a�ects how well the section of the celestial sphere measured
with that baseline length will �t with the others to form a complete grid.



-2.5e-05

-2e-05

-1.5e-05

-1e-05

-5e-06

0

5e-06

1e-05

1.5e-05

2e-05

0 200 400 600 800 1000 1200

O
ffs

et
 fr

om
 n

om
in

al
 1

0 
m

 b
as

el
in

e 
le

ng
th

 (
m

et
er

s)

Metrology Index

Baseline Lengths for the 10% case

Figure 2: The o�set from the nominal 10m baseline length plotted for each metrology break.
The gaussian sigma of each length change is 1�m. The case plotted here is one with the
metrology break probability set to 10% .

Figure 3: The residuals of the �tted baseline for the experiment shown in Figure 2, with a
gaussian �t.



These studies are motivated primarily by the desire to know how accurately the grid can
be reconstructed, and the magnitude of uncertainty in reported grid position. Thus we shall
report a reconstructed grid result as the spread of the distribution of residuals for the �t
parameters. Thus, for the example plotted in Figure 4, the grid is reported to have an ��

resolution calculated as the sigma of the gaussian distribution, which in this case is 1.9 �as for
0% metrology break probability and 3.2 �as for 10% metrology break probability, with similarly
calculated results (shown in the Figure) for the other parameters. Statistical arguments will
be based on combining the sigma values for the astrometric parameters obtained from multiple
runs into a mean performance relative to each metrology break probability.

We note that the distributions of the parameter residuals in Figure 4 show only part of the
story. When regions of the celestial sphere are examined separately, as in Figures 5 through
8, we see that the amount of the residuals varies for di�erent regions of the sky. Although
the plots for Figure 5 only show position coordinates, this zonal pattern in the residuals is
enough to show that there are considerable correlations in the results. The correlations will be
examined later in this note.

In this study it is important to remember that we want to see the relative e�ects of increasing
the frequency of the metrology breaks. Running the simulation for 5-year experiments takes a
lot of time (several days is typical), while much more throughput can be achieved by running
2 year experiments. Relative e�ects should be similar for the 2 and 5 year cases, so examining
relative e�ects allows an increase in computational eÆciency. We shall run a subset of 5 year
experiments to act as a sanity check.

5 Results

We compare results by examining the statistical behavior of a number of experiments. We
shall combine the resolution values for each experiment with a particular metrology break
probability to obtain a mean resolution for that break probability.

5.1 Degradations in the Grid Performance

The simulated 2-year mission results listed in Table 3 show an expected increase as the metrol-
ogy breaks become more frequent, but (as discussed above) because of the limited mission
length and number of observations, the entries in the table are of limited utility. It is more
illustrative to examine the relative grid performance as we increase the frequency of metrology
breaks, allowing us to make direct 2-year and 5-year comparisons to insure that the results are
consistent. We do this in Figure 9.

In Figures 9, 10, and 11 we see that the degradation in the grid resolution proceeds slowly
for the �rst few probabilities we tested. Even at the 10% level, the grid resolution still hasn't
degraded horribly, increasing the residuals by only 25%. Above 10% the resolution degrades
faster, almost doubling the residuals by the time the metrology break probability reaches 25%,
and nearly tripling by 50%. Note that the 5 year cases are exhibiting the same behavior,
validating our decision to use 2-year missions for these studies.

We had thought that the small degradation in grid performance at the 10% metrology break
level was due to observing adjacent tiles between the breaks, resulting in long (on average 10



P (Break) �� Æ ��� �Æ �

0%(30) 2.124 � 0.383 2.313 � 0.701 3.345 � 0.422 3.547 � 0.845 1.933 � 0.112

0:1%(30) 2.216 � 0.347 2.411 � 0.719 3.420 � 0.523 3.818 � 0.966 1.952 � 0.102

1%(30) 2.295 � 0.428 2.574 � 0.964 3.553 � 0.605 3.908 � 1.114 2.029 � 0.126

10%(30) 2.515 � 0.385 2.710 � 0.623 4.149 � 0.726 4.690 � 1.174 2.554 � 0.226

25%(8) 3.496 � 0.506 4.003 � 0.981 5.905 � 1.035 6.861 � 2.198 3.735 � 0.366

50%(5) 5.020 � 0.589 5.854 � 1.036 10.208 � 3.954 10.385 � 5.087 6.087 � 1.219

Table 3: The distributions of residuals for a set of metrology break probabilities, in �as.
The table lists the means and sigmas of the width of the distributions, averaged over the
number of experiments shown in the parentheses in the �rst column. This table demonstrates
a degradation in grid precision as the metrology breaks increase in frequency. Note these are
from 2 year simulated missions, so these values are not directly indicative of �nal grid accuracy,
but to show the trend as the metrology break probability is increased.

tiles) contiguous regions of the sky being observed for each metrology. We could then expect
the grid results would be sensitive to the order the grid tiles were observed. To test this,
we ran a few experiments where the order of the grids was completely random, eliminating
the contigious regions. No further degradation in the grid was observed, so we consider these
results to be robust.

5.2 Correlations in the Grid Solution

Although the iterative conjugate gradient method used for solving Equation 2[1] does not di-
rectly yield information on correlations, it is worthwhile to empirically calculate an approxima-
tion to the covariance matrix. For example, studies of the wide and narrow angle observations
that are currently being conducted need to know the correlated (systematic) and uncorrelated
(statistical) uncertainties for the astrometric parameters in order to provide their best results.

We calculate the overall empirical covariance between two �tted astrometric parameters i
and j by Equation 3, where rni is the residual of the �tted value for astrometric parameter i
of object n, �ii is the empirically determined width of the gaussian distribution of residuals
for parameter i, and hi denotes the expectation (mean) value of the term in the brackets.

�ij =
h(ri � hrii)(rj � hrji)i

�ii�jj
=

1

N�ii�jj

NX

n=1

NX

m=1

(rni � hrii)(rmj � hrji); n 6= m (3)

Note that we cannot use the simpli�ed form of Equation 3 by replacing the numerator with
h(xi�xTi )(xj�xTj )i, where x

T
i is the true (generated) value of parameter i for the object. This

substitution is invalid because, as previously discussed and seen in Figure 4, the means of the
residuals for a �tted parameter are not constrained to be zero.

Figure 12 shows a matrix of the plot of these values accumulated globally, so that each
object is paired with every other object for purposes of calculating a correlation value, which
is then entered into the plots. The �gure shows that there are no global correlations.



Of particular interest are the correlations of the astrometric parameters when, instead of
summing over the whole sky, a limited region of the sky is sampled. For example, studies of the
wide and narrow angle observations that are currently being conducted need to know the cor-
related (systematic) and uncorrelated (statistical) uncertainties for the astrometric parameters
in order to achieve their best results. Such work is performed over a single �eld-of-regard, and
we know from Figure 5 that there are zonal e�ects in the residuals such that two non-adjacent
�elds-of-regard may have signi�cantly di�erent correlations. We therefore use the simulation
to measure the magnitude of these correlations.

� Æ �� �Æ �

� 0.711 � 0.117

Æ -0.006 � 0.086 0.699 � 0.126

�� 0.040 � 0.258 -0.012 � 0.098 0.712 � 0.104

�Æ 0.016 � 0.121 0.032 � 0.347 -0.016 � 0.069 0.691 � 0.121

� 0.010 � 0.085 -0.011 � 0.090 0.032 � 0.070 0.020 � 0.083 0.395 � 0.054

Table 4: Correlations calculated on a single �eld-of-regard averaged for 30 experiments with the
metrology break probability set to 0%. We see signi�cant self correlations for most parameters,
except for the low ��� values. This tells us that for � measurements most of the measurement
uncertainty will be local and stochastic in nature.

� Æ �� �Æ �

� 0.798 � 0.088

Æ 0.005 � 0.107 0.783 � 0.098

�� -0.056 � 0.306 0.049 � 0.204 0.809 � 0.095

�Æ -0.025 � 0.192 -0.032 � 0.398 0.015 � 0.102 0.806 � 0.080

� 0.003 � 0.134 0.043 � 0.146 0.023 � 0.088 0.049 � 0.192 0.600 � 0.061

Table 5: Single �eld-of-regard correlations averaged from 30 experiments with the metrology
break probability set to 10%. We note the self-correlation values have increased, indicating
the increase of zonal errors, especially for �.

With this in mind we revisit Equation 3 and, instead of summing over all objects in the
sky, we sum only for objects within 7.5 degrees (a single �eld-of-regard radius)) of a \target"
grid object. We step through the entire grid so that each object has its turn as the target. The
results are listed in Table 5.2, where we see little correlation other than the self-correlations
of the parameters. Most of the self correlations are of order 0.7, indicating that most of the
uncertainty for those values will be because of zonal e�ects, as seen in Figure 5. The � self
correlation, though, is much smaller. Most of the error in our �tted � results will be of a
statistical (random) nature.

This is a pleasing result for distance measurements as random errors tend to cancel out
with many observations, so using several of these grid objects as reference points for a science



observation should yield very good distance values for science objects.
We would like to see how these results change as the metrology break probability is in-

creased, so we compare these results with those in Table 5.2, which were calculated using thirty
10% metrology break probability experiments. There is about a 14% increase of the non-� self
correlations, indicating an increase of the zonal e�ects noted above. However the � correlations
show a much higher sensitivity, increasing about 50%.

6 Conclusions

The most striking conclusion of this work is that the e�ects of metrology breaks are not as bad
as feared. There were expectations that a metrology break probability of 10% would result
in extreme degradation of the astrometric grid due to having too few tiles with a particular
metrology to obtain a good metrology �t. While the sensitivity of the � correlations to the 10%
case was large, that is still more metrology breaks during a grid campaign than realistically
expected, so it should not be the cause of much concern. Overall, the robustness of the grid
to small metrology break probabilities is encouraging.
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Figure 4: Residuals for grid experiments with 0% and 10% metrology break probability. Note
for � directions the plot shows real angles in the � direction, denoted by ��, and that the
matrix reduction is a multi-parameter �t, so there is no requirement that residual for any
speci�c parameter have a mean of zero. The important parameter for this distribution is the
� values of the distributions. We see that the increasing the metrology break probability to
10% increases the width of the distributions, degrading the precision of the grid.



Figure 5: These plots of position residuals versus the position coordinate show signi�cant
zonal e�ects in the residuals. At any point along the horizontal axes of the plots, two types of
errors may be discerned by examining a vertical slice: the mean along the vertical axis is the
correlated error in the �t for that region, while the vertical spread of the distribution indicates
the amount of uncorrelated error at that point. The fact that these values are not constant as
one examines the horizontal range of the plot indicates the zonal dependence of the errors.



Figure 6: These plots of residuals averaged over a 30 degree radius cone versus the position
astrometric parameters show signi�cant zonal e�ects in the residuals. As in the previous �gure,
the fact that these values are not constant as one examines the horizontal range of the plot
indicates the zonal dependence of the errors.



Figure 7: These plots of residuals averaged over a 30 degree radius cone versus the proper
mosion astrometric parameters show signi�cant zonal e�ects in the residuals. As in the previous
�gure, the fact that these values are not constant as one examines the horizontal range of the
plot indicates the zonal dependence of the errors.



Figure 8: These plots of residuals averaged over a 30 degree radius cone versus the parallax
shows signi�cant zonal e�ects in the residuals. As in the previous �gure, the fact that these
values are not constant as one examines the horizontal range of the plot indicates the zonal
dependence of the errors.
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Figure 9: The mean position residuals for various values of the metrology break probability,
relative to the residuals for no metrology breaks. The 2 year and 5 year missions are superim-
posed to demonstrate that the 2 year case suÆciently models the behavior of the 5 year case,
justifying the time savings of the 2 year simulation. We also see the combined position result.
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Figure 10: The mean proper motion residuals for various values of the metrology break prob-
ability, relative to the residuals for no metrology breaks. The 2 year and 5 year missions are
superimposed just as in Figure 9.
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Figure 11: The mean parallax residuals for various values of the metrology break probability,
relative to the residuals for no metrology breaks. The 2 year and 5 year missions are superim-
posed just as in Figure 9. Recall that the higher metrology break probability values were done
with a low number of experiments being run, so that the mismatch for the 50% probability is
not a cause for concern. This will be veri�ed in the future with more experimental runs for
this case.



Figure 12: The global correlations between astrometric parameters for a simulated whole-
sky grid, calculated using Equation 3, where each pair of objects has a single entry on each
histogram. Note that when the entire grid is considered, the local correlations seen in Figure 5
do not correspond to global correlations. Also, as this is an empirical calculation, it is possible
for the entries in these histograms to be > 1:



Figure 13: The local correlations between astrometric parameters for a sample simulated whole-
sky grid, again calculated using Equation 3. In this case, objects are paired with others that
are within a single �eld-of-regard angular radius (7.5 degrees). The correlations appear as
asymmetries in the plots, and are especially pronounced on the diagonal. This is caused by
the same zonal errors seen in Figure 5. The metrology break probability for this sample is 0%.


